- Apply the rule-of-thumb relating angle of bank and airspeed in a rate-one turn.
- Choose the recommended action to resolve a learning problem.
- Compare the angle of attack between the inner and outer wing of an aeroplane in a descending turn.
- Demonstrate how to conduct a timed turn.
- Explain the flight test performance standards for the en route portion of the navigation exercise.
- Explain the procedure to change airspeed while maintaining a constant rate of descent.
- Explain the recommended procedure for conducting an obstacle approach.
- Explain why a heading indicator must be reset at frequent intervals.
- Explain why the vertical fin is offset on a single-engine propeller driven aeroplane.
- Interpret an altitude indicator and a turn and bank indicator.
- Name the disorienting effect caused by an abrupt head movement during a turn without outside visual references.
- Predict the possible effect of making an approach in blackhole conditions.
- Recall the A.I.P. guidelines concerning the consumption of alcohol.
- Recall the time period prior to the expiry of an instructor rating that a renewal flight test may be conducted.
- Recognize the factors that impair night vision and ways to cope.

- Calculate the effect of pressure change on indicated altitude.
- Calculate true altitude.
- Choose the recommended action to resolve a learning problem.
- Compare airspeeds used for different types of take-offs.
- Compare the angle of attack between the inner and outer wing of an aeroplane in a descending turn.
- Determine pressure altitude using an altimeter.
- Employ effective eye contact during ground instruction.
- Employ visual aids effectively when presenting ground instruction.
- Explain the design factors that affect the longitudinal stability of an aeroplane.
- Explain the procedure to change airspeed while maintaining a constant rate of descent.
- Identify recommended fault analysis practices when conducting in-flight instruction.
- Identify the factors that would cause increased loading in a vertical gust.
- Identify the instruments used to recover from an unusual attitude.
- Identify the learning factor of relationship when presenting instruction.
- Identify the reason why ear and sinus pain may occur while climbing to altitude.
- Name the disorienting effect caused by an abrupt head movement during a turn without outside visual references.
- Recall the A.I.P. guidelines concerning the consumption of alcohol.
- Recognize the effect an alternate static source located inside an unpressurized aircraft will have on pressure instruments.
- Recognize when a student is using an escape mechanism.

- Calculate density altitude and true airspeed.
- Calculate pressure altitude.
- Calculate the manoeuvring speed of an aeroplane given the load factor and normal stall speed.
- Demonstrate how to conduct a timed turn.
- Explain how the location of the C of G affects aircraft stability.
- Explain how to lean an engine for best power.
- Explain the causes of wheelbarrowing.
- Explain the flight test performance standards for the ground preparation of a cross-country flight.
- Explain the relationship between weight and lift during a climb.
- Identify the instruments that only use static pressure.
- Identify the instruments used when recovering from unusual attitudes.

Instructor 1
April 2099
- Apply the rule-of-thumb relating angle of bank and airspeed in a rate-one turn.
- Choose the recommended action to resolve a learning problem.
- Compare the angle of attack between the inner and outer wing of an aeroplane in a descending turn.
- Demonstrate how to conduct a timed turn.
- Explain the flight test performance standards for the en route portion of the navigation exercise.
- Explain the procedure to change airspeed while maintaining a constant rate of descent.
- Explain the recommended procedure for conducting an obstacle approach.
- Explain why a heading indicator must be reset at frequent intervals.
- Explain why the vertical fin is offset on a single-engine propeller driven aeroplane.
- Interpret an attitude indicator and a turn and bank indicator.
- Name the disorienting effect caused by an abrupt head movement during a turn without outside visual references.
- Predict the possible effect of making an approach in blackhole conditions.
- Recall the A.I.P. guidelines concerning the consumption of alcohol.
- Recall the time period prior to the expiry of an instructor rating that a renewal flight test may be conducted.
- Recognize the factors that impair night vision and ways to cope.

- Calculate density altitude and true airspeed.
- Calculate pressure altitude.
- Calculate the manoeuvring speed of an aeroplane given the load factor and normal stall speed.
- Demonstrate how to conduct a timed turn.
- Explain how the location of the C of G affects aircraft stability.
- Explain how to lean an engine for best power.
- Explain the causes of wheelbarrowing.
- Explain the flight test performance standards for the ground preparation of a cross-country flight.
- Explain the relationship between weight and lift during a climb.
- Identify the instruments that only use static pressure.
- Identify the instruments used when recovering from unusual attitudes.
- Interpret a turn and bank indicator, relate angle of bank to rate of turn.
- Interpret the significance of the colour markings on an airspeed indicator.
- Predict the indication of the turn and bank instrument during a spin.
- Recognize the factors that impair night vision and ways to cope.
- State the guidelines for taking hayfever medication.
- Calculate the effect of pressure change on indicated altitude.
- Calculate true altitude.
- Choose the recommended action to resolve a learning problem.
- Compare airspeeds used for different types of take-offs.
- Compare the angle of attack between the inner and outer wing of an aeroplane in a descending turn.
- Determine pressure altitude using an altimeter.
- Employ effective eye contact during ground instruction.
- Employ visual aids effectively when presenting ground instruction.
- Explain the design factors that affect the longitudinal stability of an aeroplane.
- Explain the procedure to change airspeed while maintaining a constant rate of descent.
- Identify recommended fault analysis practices when conducting in-flight instruction.
- Identify the factors that would cause increased loading in a vertical gust.
- Identify the instruments used to recover from an unusual attitude.
- Identify the learning factor of relationship when presenting instruction.
- Identify the reason why ear and sinus pain may occur while climbing to altitude.
- Name the disorienting effect caused by an abrupt head movement during a turn without outside visual references.
- Recall the A.I.P. guidelines concerning the consumption of alcohol.
- Recognise the effect an alternate static source located inside an unpressurized aircraft will have on pressure instruments.
- Recognize when a student is using an escape mechanism.
Class 4 Instructor Written Exam (AIRAF)

The Transport Canada exam was remarkably similar to the practice AIRAF exams in the Culhane Instructor Rating: Written Test Book. I had T/C AIRAF #2 which was, in terms of difficulty somewhere between the first and second Culhane exam. A student who is very comfortable with the material in the second exam should not find the T/C exam much different. I would recommend that student complete all four exams in the practice book. Below, I have listed some of the differences between the Transport and the Culhane exams.

1. Learning Factors: Questions where just like the Culhan.
2. Weight & Balance: There were a lot of weight and balance questions. One was a simple "is this airplane loaded within W&B limitations?" Then there was a question about what minimum weight would be required to move from one station to another to move the C of G into limits.
3. Wake Turbulence: Two minutes after the passage of a large transport does the wake turbulence a.) Dissipate Slowly b.) Rapidly c.) Stay at the level of the A/C.
5. Take off Performance: 2 questions, one easy and one that I totally guessed on. (Cessna type chart, although the format of the chart was slightly different from the chart in the Culhane.)
6. Calculate True Altitude and True Airspeed.
7. Range & Endurance: One simple: When flying at the best Lift/Drag Ratio you are flying for which situation? Answer: Range. Then there was a question about the determining where range and endurance fall on the power curve only. (Remember the tangent from the origin to the power curve!)
8. There was only one question about the Exercise numbers, for example spins are exercise 13.
9. In what condition does an A/C become airborne at the highest possible speed?
10. What effects the rate and angle of climb?
11. Wheel-barrowing: The Culhane book discusses wheel-barrowing as a result of high approach speeds, but the T/C exam asked about the causes on take-off.
Examination questions which are related to the following were answered incorrectly.

- Apply the demonstration-performance method when presenting instruction.
- Calculate the time required to complete a specified procedure turn.
- Compare the effect of altitude on indicated and true stall speeds.
- Compare the sensitivity of different flight instruments during abrupt changes in pitch.
- Describe how lift/drag ratio is affected by a change in aspect ratio.
- Employ the learning factor of readiness when presenting instruction.
- Explain how an aeroplane turns.
- Explain the design factors that affect the longitudinal stability of an aeroplane.
- Explain the factors that determine the best rate of climb.
- Explain the procedure to change airspeed while maintaining a constant rate of descent.
- Identify maximum range and endurance airspeeds given a power available and power required graph.
- Identify the factors that affect the angle of attack at which an airfoil stalls.
- Identify the instruments used to recover from an unusual attitude.
- Interpret the significance of the colour markings on an airspeed indicator.
- Name the disorienting effect caused by an abrupt head movement during a turn without outside visual references.
- Predict the possible effect of making an approach in blackhole conditions.
- Predict the visual illusions that may result during a low level turn in strong winds.
- Recall the A.I.P. guidelines concerning the consumption of alcohol.
- Recognize the factors that impair night vision and ways to cope.
Instructor Flight Test.

Scenario given:
- Last lesson: Review Range & Endurance
 - PGI Slow Flight
 - Demo Stalls
- Next lesson: PGI on stalls

After PGI asked to do preflight briefing on unusual attitude recovery on instrument. Then said vacuum pump failed.

Pre-flight: Looked at map - to what practice area, altitude etc. Now asked student if fuel, weather check with balance was done etc. Student declined - you know who did this.

Flight: Pass. Brief - not necessary he was familiar. No teaching until run-up. (He observed)

Started with short field T/O demo. Different rates of climb to practice area. Start Level Flight. (AI)
Steep Turns. (AI)
Spiral Entries & recovery. - emphasise climbing & descending stall in turn.
Introduction to instrument flying. (IA)
Demo one perfect circuit + landing. (Demo)
Student flew next circuit. — looking for you to guide him — talked him through.

8:30 - 8:55
Negotiate pre-brief of what expected
8:55 - 9:15
Time to set up
9:15 - 9:45
Pre-Flight
9:45 - 10:00
His questions on Inst.
10:00 - 10:40
Pre-flight + walk-around
10:40 - 11:45
Air Time (Flight Time 1:3)
12:00 - 12:20
Debrief (And pay)
Questions on Class IV
Instructor Rating
2002 02 04

* Use this in conjunction with the incorrect answer sheet

- What time after considerable consumption of alcohol?
- Shifting C/L
- W/B x 2
- Take off distance over 50' obstacle
- Hypoxia effects
- Danger of landing plane @ night in black hole illusions
- VOR interpretations
- VOT check - 180° to
- Not intercept (comp wind)
- Some - Learning factors
 - Not as many as expected
- Human factors: understand - fatigue & errors
- X-Wind Limitation speed from other than 90°
- Be careful there were at least 3 questions that were associated to multiple answers, particular with the VOR questions

OBS Center 090° to which aircraft would receive 090° to indications. Don't get the answer combination mixed up with the answer number.
- ONE - SCANT RANGE & READING OVER MAXNM.

- PROPER PROCEDURE FOR POOR OPEN IN FLIGHT.

- WHY IS THE FIN (VERTICAL) OFFSET?

- UNDERSTAND "GUST FACTORS"

- TOTAL TIME FOR MANEUVERS

\[
\begin{align*}
180^\circ & = 60 \text{ sec} \\
90^\circ & = 30 \text{ sec} \\
45^\circ & = 15 \text{ sec}
\end{align*}
\]

\[
\begin{align*}
90^\circ & = 15 \text{ sec} \\
45^\circ & = 15 \text{ sec} \\
360^\circ & = 6 \text{ min}
\end{align*}
\]

- WHAT KEEPS AN AIRCRAFT IN A TURN?

- EFFECTS OF GLIDING IN A HEADWIND

- SWEEPBACK WING PROPERTIES

- POWER CURVE - KNOW WHERE RANGE & ENDURANCE ARE LOCATED
- On a turning decent which wing has a higher angle of attack?
- Effect of dihedral on lateral stability
- Why does the heading indicator need to be reset (2) reasons, how often?
- Effect of blocked static port on air speed indicator during decent?
- Illusion in circuit when turning from into wind to downwind.
- Compass lead & lag errors?
- Human factors: Coriolis effect.
- In unusual attitude recovery, which are the first instruments to be referred to?

There are very few flight test standard questions

- Figure density, altitude and its effect on TAS.
- Altimeter change from 29.62 to 30.22, what is the effect on the altimeter reading?
- Climbing in "black hole" conditions, what is the illusion?
- Landing on upslope runway, what is the hazard?
- Changing wing shape

 If you double the wing length and reduce the chord by 50%, what happens to the effect of the wing?

- Voice variance is an example of what type of learning factor?

- Carburator ice at it's worse form with 50% humidity & what temp?

 - 150°F

- What should the temperature be @ 10,000' assuming standard atmosphere?

* Don't spend too much time on learning factors or human factors. Good solid knowledge on theory of flight both instructor & commercial is what is really tested. If I had to do it over again I would spend less time on learning factors & air exercises.
INSTRUCTION (A.RAF) RX 457

Q - Rudder Trim : 180 KTS : Rule of Thumb
LCRAF : START NOW
SPEED ?
SPIND : 110-130 -
Q - Inner & Outer Loop 6 of Attacker in Descend & Turn

Q - START Thru in Time & Turn ?
- PUSH CTRL -
- En Route NAV: EX : Whirly Chaser ?

Q - Constant 500' above Descend : How changes
SPIND from 90 to 100 ?
Q - NOR & DN VS PLAN CINE
Q - What Rudder Power is Synneter APP's ?
- After large - AEF(X851)
Q - Rudder HI 2000 is why ?
- Bank & Mix & APP's PIPES -
Q - Vertical Feed Offset ? why ?
- Slipstream - offset thrust -
Q - Effects : ABRupt HEAD Purse in Turn ?
A - Atto : YES Wide : Spatial Discomfort
Q - Approach ?
Q - Heavy Approach ?
- 12 - 24 - 48 -

Q -
REASURCE INSTRUCTOR FLIGHT TEST
PRIOR TO EXPIRY?
- 30 - 60 - 90 -
- NICE VISUAL FACTORS?
- PRESSURE CENTER ON W/D ALTITUDE
- WHAT HERE? A/S AS T/O
- 29.42 Hg + 6500' = 7000 PA = 183 KT + 7856'
- DO YOUR ASST.

IND SMALL SP + TAB @ S/L + 8000'
AWS = SAME IND + TAB IND'

GAIN 2500 TUR/ = 5° U/S ATT DIFF TO (CO10 STD)
- INSTRUM AS INCREASED AS
AS1+ T/L + US1 + ART + HI
- BLACK BORE ABD 400KB
HICL - LWR GST - SLOW
- NOSE DOWN GOOD CLIMB HORIZONTAL
- VISUAL ATT.
COURT AS
EXIT IN FLICK
- DEPLOT WITH CONSUM
- LOAD & UNIT COSTS
- HEAVY VS LIGHT & FAST VS SLOW
- ATT STATIC CASION CONJN
- LOW PR = HIGH ARTIMEN
- Schultz 18yr constant
IMPortANT - IJDEAN KNOW - 12AM
- NIGHT VS DAY EFFECT
- BLOOD VS BLOOD - BLD LIGHT
- W+ B = FULL ACCURATE
- 222
- 2550 Lbs = 94" = \(\frac{2550}{\frac{94}{3}} \) = ATTACK TO 93 in
- 794 vs 43 cm - 21 cm
- W + 3 C 2550 - WHICH DOT A, T, C, D
- DIFFERENT = C
- END VS RATING
- DIFFERENT A, T, C, D
- W6 DIST over 50° - TEMP 50° vs 75°
- 47% + 16%
- Slow Repair - WHICH THEN?
- FASTER = 11885 PPM
- DESIGN FACTOR FOR LOCAL STABILITY
- C & G Fred Corp - SURFAT 41
- TRUE ART
\[R_{14} = 3.5 \text{ Hz} \]

\[R_{14} = 2.0 \text{ Hz} \]

\[45^\circ \text{ interrupter} \]

\[R_{14} = 135 \]

\[45^\circ \text{ interrupter} \]

\[R_{14} = 3.0 \]

\[V_{14} = 0.5 \text{ Hz} = 180^\circ \text{ neutral green} \text{ left?} \]

\[V_{14} = 0.5 \text{ Hz} = 180^\circ \text{ neutral green} \text{ left?} \]

\[\text{Ans} = \text{ R.A.C.D} \]

\[0.5 = 180^\circ \]

\[\text{Ans} = A.E.F \]